Search results for " iterated conditionals"
showing 6 items of 6 documents
Iterated Conditionals and Characterization of P-Entailment
2021
In this paper we deepen, in the setting of coherence, some results obtained in recent papers on the notion of p-entailment of Adams and its relationship with conjoined and iterated conditionals. We recall that conjoined and iterated conditionals are suitably defined in the framework of conditional random quantities. Given a family \(\mathcal {F}\) of n conditional events \(\{E_{1}|H_{1},\ldots , E_{n}|H_{n}\}\) we denote by \(\mathcal {C}(\mathcal {F})=(E_{1}|H_{1})\wedge \cdots \wedge (E_{n}|H_{n})\) the conjunction of the conditional events in \(\mathcal F\). We introduce the iterated conditional \(\mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\), where \(\mathcal {F}_{1}\)…
Interpreting Connexive Principles in Coherence-Based Probability Logic
2021
We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…
Logical Operations among Conditional Events: theoretical aspects and applications
2019
We generalize the notions of conjunction and disjunction of two conditional events to the case of $n$ conditional events. These notions are defined, in the setting of coherence, by means of suitable conditional random quantities with values in the interval $[0,1]$. We also define the notion of negation, by verifying De Morgan's Laws. Then, we give some results on coherence of prevision assessments for some families of compounded conditionals and we show that some well known properties which are satisfied by conjunctions and disjunctions of unconditional events are also satisfied by conjunctions and disjunction of conditional events. We also examine in detail the coherence of the prevision a…
Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals
2023
We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on con…
Conjunction, Disjunction and Iterated Conditioning of Conditional Events
2013
Starting from a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of coherence. We give a representation of the conjoined conditional and we show that this new object is a conditional random quantity, whose set of possible values normally contains the probabilities assessed for the two conditional events. We examine some cases of logical dependencies, where the conjunction is a conditional event; moreover, we give the lower and upper bounds on the conjunction. We also examine an apparent paradox concerning stochastic independence which can actually be explained in terms of uncorrelation. We briefly introduce the…
Iterated Conditionals, Trivalent Logics, and Conditional Random Quantities
2022
We consider some notions of iterated conditionals by checking the validity of some desirable basic logical and probabilistic properties, which are valid for simple conditionals. We consider de Finetti’s notion of conditional as a three-valued object and as a conditional random quantity in the betting framework. We recall the notions of conjunction and disjunction among conditionals in selected trivalent logics. Then, we analyze the two notions of iterated conditional introduced by Calabrese and de Finetti, respectively. We show that the compound probability theorem and other basic properties are not preserved by these objects, by also computing some probability propagation rules. Then, for …