Search results for " iterated conditionals"

showing 6 items of 6 documents

Iterated Conditionals and Characterization of P-Entailment

2021

In this paper we deepen, in the setting of coherence, some results obtained in recent papers on the notion of p-entailment of Adams and its relationship with conjoined and iterated conditionals. We recall that conjoined and iterated conditionals are suitably defined in the framework of conditional random quantities. Given a family \(\mathcal {F}\) of n conditional events \(\{E_{1}|H_{1},\ldots , E_{n}|H_{n}\}\) we denote by \(\mathcal {C}(\mathcal {F})=(E_{1}|H_{1})\wedge \cdots \wedge (E_{n}|H_{n})\) the conjunction of the conditional events in \(\mathcal F\). We introduce the iterated conditional \(\mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\), where \(\mathcal {F}_{1}\)…

CombinatoricsPhysicsSettore MAT/06 - Probabilita' E Statistica MatematicaCoherence Conditional events Conditional random quantitiesConditional previsions Conjoined conditionals Iterated conditionalsProbabilistic entailment.Iterated functionProduct (mathematics)Characterization (mathematics)
researchProduct

Interpreting Connexive Principles in Coherence-Based Probability Logic

2021

We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…

Settore MAT/06 - Probabilita' E Statistica MatematicaNegationAntecedent (logic)Computer sciencePremiseCalculusProbabilistic logicCoherence (philosophical gambling strategy)Connection (algebraic framework)Aristotle's These Coherence Compounds of conditionals Conditional events Conditional random quantities Connexive logic Iterated conditionals Probabilistic constraints.Connexive logicEvent (probability theory)
researchProduct

Logical Operations among Conditional Events: theoretical aspects and applications

2019

We generalize the notions of conjunction and disjunction of two conditional events to the case of $n$ conditional events. These notions are defined, in the setting of coherence, by means of suitable conditional random quantities with values in the interval $[0,1]$. We also define the notion of negation, by verifying De Morgan's Laws. Then, we give some results on coherence of prevision assessments for some families of compounded conditionals and we show that some well known properties which are satisfied by conjunctions and disjunctions of unconditional events are also satisfied by conjunctions and disjunction of conditional events. We also examine in detail the coherence of the prevision a…

Settore MAT/06 - Probabilita' E Statistica MatematicaConditional events conditional random quantities conjunction disjunction negation coherent prevision assessments coherent extensions quasi conjunction probabilistic reasoning p-entailment inference rules iterated conditionals System P.
researchProduct

Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals

2023

We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on con…

Settore MAT/06 - Probabilita' E Statistica MatematicaCoherence Compounds of conditionals Conditional events Conditional random quantities Connexive principles Default reasoning Iterated conditionals Probability logic.Settore MAT/01 - Logica Matematica
researchProduct

Conjunction, Disjunction and Iterated Conditioning of Conditional Events

2013

Starting from a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of coherence. We give a representation of the conjoined conditional and we show that this new object is a conditional random quantity, whose set of possible values normally contains the probabilities assessed for the two conditional events. We examine some cases of logical dependencies, where the conjunction is a conditional event; moreover, we give the lower and upper bounds on the conjunction. We also examine an apparent paradox concerning stochastic independence which can actually be explained in terms of uncorrelation. We briefly introduce the…

Theoretical computer scienceSettore MAT/06 - Probabilita' E Statistica MatematicaComputer scienceProbabilistic logicCoherence (philosophical gambling strategy)Conditional events conditional random quantities conjunction disjunction iterated conditionalsConjunction (grammar)Set (abstract data type)Regular conditional probabilitydisjunction; conditional events; conjunction; conditional random quantities; iterated conditionals.Iterated functionRepresentation (mathematics)Settore SECS-S/01 - StatisticaMathematical economicsEvent (probability theory)
researchProduct

Iterated Conditionals, Trivalent Logics, and Conditional Random Quantities

2022

We consider some notions of iterated conditionals by checking the validity of some desirable basic logical and probabilistic properties, which are valid for simple conditionals. We consider de Finetti’s notion of conditional as a three-valued object and as a conditional random quantity in the betting framework. We recall the notions of conjunction and disjunction among conditionals in selected trivalent logics. Then, we analyze the two notions of iterated conditional introduced by Calabrese and de Finetti, respectively. We show that the compound probability theorem and other basic properties are not preserved by these objects, by also computing some probability propagation rules. Then, for …

Settore MAT/06 - Probabilita' E Statistica MatematicaCoherence Conditional events Conditional random quantities Conditional previsions Conjoined and disjoined conditionals Iterated conditionals Compound probability theorem Lower and upper bounds Import-export principle
researchProduct